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HEAT TRANSFER THROUGH THE AXIALLY
SYMMETRIC BOUNDARY LAYER ON A
MOVING CIRCULAR FIBRE
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Abstract—In the process of manufacturing a glass or polymer fibre, a continuous filament of hot material
is drawn from an orifice and cools as it passes through the surrounding environment. The rate of heat loss,
typified by the local Nusselt number, is of considerable interest from a practical viewpoint.

A simple model of this process is examined wherein the fibre is treated as a continuous infinite circular

cylinder issuing steadily from an orifice and penetrating a fluid environment of infinite extent. It is shown
that the fluid motion which is generated may be treated as a boundary layer problem. On this basis, and
assuming that the fibre is maintained at a uniform temperature, a method is developed for finding the
local Nusselt number by means of the Karman—Pohlhausen integral technique. Results are given for
several Prandtl numbers (o) in the range 0 < ¢ < 1. Careful consideration has been given to estimating
the probable error arising from the use of the integral method and appropriate correction factors are sug-
gested. A rough averaging procedure allows a comparison to be made with some experimental heat transfer
results on fibres at non-uniform temperatures. Satisfactory agreement is obtained.
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NOMENCLATURE

radius of fibre;

coefficients in series expansion

@7,

local drag coefficient, defined by

equation (13);

thermal conductivity;

local Nusselt number,
Q/KT, — T,);

rate of heat transfer per unit

length of fibre;

distance from the axis of the fibre ;

temperature;

surface temperature of the fibre;

ambient temperature of the fluid ;

speed of the fibre;

axial and radial fluid velocity com-

ponents;
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X, axial coordinate ;

¥ distance from the surface of the
fibre.

Greek symbols

o(x), parameter in boundary layer velo-
city profile, equation (7);

B(x), parameter in boundary layer tem-
perature profile, equation (19);

7, Euler’s constant ;

o, momentum boundary layer thick-
ness;

or, thermal boundary layer thickness;

g, dummy variable in equation (9);

K, thermal diffusivity ;

i, absolute viscosity;

v, kinematic viscosity ;

g, Prandt] number (v/x).

1. INTRODUCTION

IN THE glass and polymer industries, fibres are
manufactured by means of a continuous extru-
sion process. Essentially, a filament of hot
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material is drawn through a circular orifice
and wound onto a drum. The rate at which the
fibre loses heat as it passes from the orifice to
the drum is of considerable practical interest
because this has an important bearing on its
final characteristics. In particular, glass fibres
are believed to derive their remarkably high
strength from the high speed of drawing which
promotes a rapid rate of cooling (Otto [1] and
Bateson [2]). It is with the heat transfer process
that we shall be concerned here.

Recently, several authors have given attention
to flows generated by continuous moving sur-
faces. Foremost amongst the investigators was
Sakiadis [3-5] who considered the boundary
layer flow which develops when an unending
flat sheet issues from a slot and moves steadily
through a fluid which would otherwise be
stationary; the corresponding axially sym-
metric boundary layer on a circular cylinder
issuing steadily from an orifice was also singled
out for study. Sakiadis was concerned with
calculating the main momentum boundary
layer characteristics, such as the drag coefficient.
Much of Sakiadis’s work on the axially sym-
metric flow is relevant to the present problem
and we shall later explain it in detail. We shall
also discuss the probable accuracy which his
method of solution achieves.

The problem of heat transfer through bound-
ary layers on continuous moving flat sheets
has been studied by Tsou et al. [6]. They ob-
tained solutions for uniform wall temperature
and for uniform heat flux conditions. Another
important contribution has been made by
Erickson et al. [ 7] who investigated theoretically
the rate of cooling of a flat sheet when it pene-
trates a fluid environment. Due allowance
was made for the heat capacity of the sheet and
hence it was not constrained to remain at a
uniform temperature.

Theoretical work on heat transfer from a
moving glass fibre has been presented by Glicks-
man [8]. He investigated the dependence of the
fibre temperature on distance from the orifice
and remarked that the key problem is to
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determine the Nusselt number, Making the
boundary layer approximations, Glicksman
derived a formula for the Nusselt number
based upon some earlier work by Glauert and
Lighthill {9] on axisymmetric laminar boundary
layer flow over a fixed semi-infinite cylinder.
However, Sakiadis [3, 5] demonstrated that
there is a fundamental difference between the
boundary layer on a moving cylinder (to which
the fibre approximates): it was shown that the
drag coefficient on a moving cylinder is about
20 per cent less than that on a fixed cylinder.
A similar difference can be expected in the
corresponding Nusselt numbers.

Glicksman also used Reynolds’ analogy to
obtain the Nusselt number from Glauert and
Lighthill’s result for the drag coefficient. How-
gver, as noted by Glicksman, Reynolds’ analogy
is strictly accurate only if the Prandtl number
of the fluid is unity. The error in this approxima-
tion can be appreciable even for air with a
Prandtl number of about 0-72. It should be
mentioned that this particular error could have
been eliminated by using instead the solution
to the problem of heat transfer through the
axisymmetrical boundary layer on a fixed
cylinder for arbitrary Prandtl number which
has been given by Bourne and Davies [10],
Bourne et al. [11] and by Eshghy and Homn-
beck [12].

The object of the present paper is to give a
method for calculating the Nusselt number
which is free from the disadvantages inherent in
Glickman’s method: the method deals directly
with a moving fibre and is applicable to fluids
of arbitrary Prandtl number.

2. FORMULATION OF THE PROBLEM

Since the present study of heat transfer is
motivated by a problem of considerable practi-
cal interest, it seems desirable to consider first
the basic approximations which we shall make
in order to understand the extent to which the
theory is realistic.

One of the most important underlying as-
sumptions is that we can treat the problem as
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one of heat transfer through an axially sym-
metric laminar boundary layer. Typically, the
speed of a drawn fibre will be in the range
100-600 cm/s and the length of fibre of interest
will be about 50 cms. It follows that for a fibre
passing through air or some similar environ-
ment, the Reynolds number will be in the range
of about 10*-10°. This is certainly high enough
for the boundary layer approximations to be
applicable. The assumption of axial symmetry
may not always be realistic since the fibre may
undergo transverse vibrations, but provided
the oscillations are not too rapid the boundary
layer will not be seriously disturbed.

There is some doubt as to the extent to which
the boundary layer may be turbulent, but it is
well substantiated that for flow over flat plates
turbulence occurs at a Reynolds number of
about 5 x 10%. It seems unlikely that the
critical Reynolds number in the present situa-
tion will be vastly different from this. Accord-
ingly, we assume that laminar flow conditions
prevail.

A further assumption we shall make is that
the radius of the fibre is a constant. In practice,
the initial radius may be about 10~! cm but
this decreases very rapidly to about 2 x 1073
cm and then remains almost constant. The large
change in radius usually occurs within a distance
of 1-2 cm from the orifice, which is only 24
per cent of the total distance to the drum onto
which the fibre is wound. As an approximation,
it thus seems entirely reasonable to neglect the
variation of the radius near the orifice.

The most serious difficulty is that the tem-
perature of the fibre is not uniform. Typically,
the temperature decreases by as much as
1000°C in passing from the orifice to the drum
and consequently the physical constants of the
environment through which the fibre moves
may vary considerably. Problems involving
variable fluid properties are notoriously dif-
ficult to handle and we can see no way of
dealing with this one analytically. Instead, we
shall be content to replace the non-uniform
fibre temperature by a uniform average value
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and also neglect any variation of the physical
properties of the fluid. Although this procedure
may seem a severe shortcoming, the final
results are rather surprisingly useful. We shall
show, for example that the dependence of the
Nusselt number on the drawing speed and fibre
radius is supported by some experimental
findings of Alderson et al. [13]. Further,
Glicksman [8] has shown how knowledge of
the average Nusselt number can be used to
estimate the dependence of fibre temperature
on distance from the orifice.

Finally, it should be mentioned that we
assume that forced convection is the dominant
heat transfer mechanism and also neglect any
viscous dissipation of energy in the boundary
layer. By examining the orders of magnitude
of the Rayleigh and Eckert numbers, it is readily
verified that the conditions under which we may
neglect natural convection and viscous dis-
sipation are well fulfilled.
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FiG. 1. Endless circular fibre drawn steadily downwards
through a circular orifice.

With the approximations described above,
the problem to be undertaken is reduced to that
of finding the Nusselt number for a continuous
circular fibre issuing from an orifice into a
homogeneous fluid (Fig. 1). It will be assumed
that the fibre is maintained at a uniform tem-
perature 7T, and that it moves in the axial
direction away from the orifice with constant
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speed U. At large distances from the fibre,
the fluid is at rest and at a uniform temperature
T,

We take coordinates x and r which measure
distance along the axis of the fibre from the
orifice and distance from the axis respectively.
Let u, v, respectively, be the axial and radial
components of the fluid velocity (Fig. 1) and
denote the fluid temperature by T. The ap-
propriate boundary layer equations are

ou 0
ra-%é;(rv):O, 1)
ou ou vo [ ou
Yot Trar (a’) @
0x v or  ror ¢ or)’

where v, x are, respectively, the kinematic
viscosity and thermal diffusivity of the fluid.
The boundary conditions are

u=U, v=0, T=T,

u—0,

at r=aq, 4
v—-0 T->T, as r—->oc, (5

where a is the radius of the fibre.

3. CALCULATION OF THE VELOCITY PROFILE

The first step towards finding the rate of heat
transfer is to determine the velocity profile from
equations (1) and (2). This has been carried
out by Sakiadis [5] using the Karman-Pohl-
hausen technique, and it is convenient to
recall here the essentials of the analysis.

Integrating equations (1) and (2) from the
surface of the cylinder to infinity leads to the
momentum integral equation, viz.

d _ ou
a—;ju @+ y)dy= —av <6y)y=0 ©)

0

where y = r —a denotes distance from the
surface of the cylinder.

Denoting the thickness of the momentum
boundary layer by 8(x), Sakiadis adopted as a
suitable Pohlhausen profile
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1 y~
=] - —1 = fi <
o oge(l—!—a) or y<dlx) (7

% =0 for y> d(x) (®)

This profile has good accuracy near to the fibre,
which is known to be a particularly desirable
feature when calculating surface characteristics.
Furthermore, it is asymptotically of the correct
form as x — co. For, when x — oo, the inertia
terms in the equation of motion (2) vanish
(because u becomes uniform) and the reduced
equation is then satisfied by (7) identically.

By forcing the profile to satisfy the momentum
integral equation (6), the equation to determine
the free parameter o(x), was found to be

a(x)
2vx e e* 1 1
— =1 —— 4 — + = |dt 9
Ud? f(l)f<t 12+t+t2) ©

Sakiadis evaluated the integral in (9) by a
numerical method, but it can be expressed in
terms of the tabulated exponential integral
function Ei(z), defined by

Ei(z) = J e{dt. (10)

i )

Integrating the second term by parts, the
integral on the right-hand side of (9) is found
to be

eZa 625
— - — — Ei2) + Ei(2¢) + log, 2

1 1
— log, 26 — =+~

Using the asymptotic formula
(1

is Euler’s constant, it

Ei(2¢) ~ y + log,(2¢) as &-—0,

where y = 0:5772 ..
follows that

2z __
2% ! i+ log, 2+ ~ 2 (12)
Ua o
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By using the appropriate tables, values of «
as a function of 2vx/Ua?® were determined from
(12) and were found to agree with those tabu-
lated by Sakiadis [5]

The Karman-Pohlhausen procedure is not,
of course, exact and it will be of some interest
later to have available an estimate of the likely
error incurred in using it to find the local drag

coefficient, defined as

Cp = — 2mapl0u/0y),-o/(uV), (13)

where u is the absolute viscosity. Substituting
the velocity profile (7), we find

Cp = 2mja(x). (14)
Now it is readily deduced from (9) that
2vx
W~§a2 as o -0 (15)

It follows that
Ua?\t
Cp ~ 0816n (T:?) as x-0  (16)

But in limit when x — 0, the local drag coefficient
on the fibre should be the same as that on a
semi-infinite flat sheet issuing from a slot with
steady speed U into a fluid at rest at large
distances. Sakiadis [4] solved this problem
exactly and showed that

2\
Cp = 08887 (2“—) .
VX

The drag coefficient at the leading edge of the
fibre is therefore underestimated by about 8 per
cent using the Karman-Pohlhausen method.
Since the assumed velocity profile becomes
increasingly accurate as x increases (and is
asymptotically correct), it seems very likely that
the error in the drag coefficient will decrease
with increasing x.

To obtain an estimate of how the error varies,
we may consider the work of Glauert and Light-
hill [9] who encountered a similar situation in
their Karman-Pohlhausen treatment of the
axially symmetric boundary layer on a fixed

)
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cylinder. They found that the drag coefficient
is underestimated by 13 per cent at the leading
edge, and that the error decreases as x increases.
Using the formulae given in their paper, we

find that tha arrare ara ahant 12 ner cent nnr‘
1NG mday Ul CITOIS aiC daC0uUl 14 pol (Ui alll

3 per cent when log, (vx/Ua?) is —3 and 7,
respectively. If we assume that the error de-
creases linearly in this range of log,, (vx/Ua?)
and adjust the values of the drag coefficient
predicted by the Karman—Pohlhausen solution
accordingly, we obtain values which differ by
about 15 per cent at most from those finally
recommended by Glauert and Lighthiil.

In the present problem, the exact solution for
large values of vx/Ua? is not available and
consequently, in this range, it is not easy to
estimate the error in the values for the drag
coefficient. However, it seems plausible to
suppose that the error will decrease in a manner -
somewhat similar to that in the problem of flow
over a fixed cylinder. We shall assume, therefore,
that the Karman-Pohlhausen solution under-
estimates the drag coefficient by 8 per cent at
log;o (vx/Ua?) = —3 and that this underesti-
mate decreases linearly to 2 per cent at log,,
(vx/Ua?) = 7. Table 1 displays the correction
factor calculated on this basis corresponding to
various values of log,, (vx/Ua?). The values of
the drag coefficient C;, which we would recom-
mend at these values of log,, (vx/Ua?) may be
obtained by multiplying the results under the
column ¢ =1 by the appropriate correction
factor. [When ¢ = 1, the drag coefficient C,, is
identical to the Nusselt number Nu defined
later, equation (26)].

Finally in this section, we note that in the case
of flow over a fixed cylinder, Seban and Bond
[14] showed that the flat plate solution is
accurate to within 2 per cent when log;,,
(vx/Ua?) < ~3. In the present problem, the
flat plate solution of Sakiadis [4] probably has a
similar range of validity.

4. THE RATE OF HEAT TRANSFER

The Karman-Pohlhausen method proposed
for finding the temperature distribution and
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rate of heat transfer is similar to that used by
Bourne et al. [11] in the corresponding problem
of flow over a fixed cylinder.

surface of the cylinder to infinity, we

energy integral equation, viz.

d [ or
'&;j“(T ~ T @+ Y dy = —ax ("g;)y;o'
[23
{18}

A suitable form for the temperature profile is
readily found: for, the profile for T should be
essentially similar to that for u [given by equa-
tions (7) and (8)] because T — T,, and u satisfy
similar differential equations and similar boun-
dary conditions. Accordingly, we assume that

-7, 1 y
T =T, =] e log, (1 + a)
fory < §4(x)

(19)

and

- T,
T = Ofory = d4{x),

w x

(20)

where d,(x) is the thickness of the thermal
boundary layer. This form for T satisfies the
basic differential equation at the surface of the
cylinder (y = 0) and the appropriate boundary
conditions. Furthermore, like the chosen form
for u, the profile will be asymptotically correct
when x — oo because the convection terms on the
left-hand side of the differential equation (3)
vanish in the limit. and the right-hand side is
reduced to zero identically when (19) and (20)
are substituted.

Substituting (7), (8), (19) and (20) into the
energy integral equation (18) and assuming that
& < 6y, we obtain

d [, (1 1t 1
Spied
...(24_1_}_34_,&)} 4x

« B af

= ZUp 21

The assumption that é < §; implies that the
Prandtl number ¢ = v/« is less than or equal to
unity. An equation similar to (21) for the case

when ¢ > 1 can easily be derived, but this range
of Prandtl numbers will not be considered here.

The factor de/dx which is implicit in (21) may
be eliminated by means of equation (9). Dif-
ferentiating the latter equation with respect to
« yields

dx Ua
dcx

Performing the differentiation in (21) and using
(22), it follows after some simplification that

dB

e 22 ——
do [

{e“(a ~D+a+1] (22

1)+ a + 17 + po~ {e**(2up

24—+ 4+ 1]
=26 e e e~ +a+ 1] (23)

It can easily be deduced from equations (7)
and (8) that ofx)=log[1 + a™'8(x)}; and
similarly from equations (19} and (20} we obtain

B(x) = log,[1 + a~'d4(x)]. Since 5(0) = 3{0)
= 0, it follows that
f=0 when a=0. (24

This is the necessary boundary condition for the
differential equation (23).

The local rate of heat transfer, per unit length
of cylinder is

Olx) = (25)

—2nak{0T /0y)y~o.

Defining the Nusselt number Nu to be Q/[ KT,
— T,)), it follows from (19) and (25) that

2n
Ny = —.
g

(26)

The function f§ can be obtained in terms of «
by integrating equation (23) subject to the boun-
dary condition (24). In the previous section we
showed how « can be found as a function of
vx/Ua?, and hence we are now in a position to
determine the Nusselt number.
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5. COMPUTATION OF RESULTS

At the point o = 0, § = 0, the expression for
dp/de given by (23) is of an indeterminate form.
To find B in the neighbourhood of this point,
consider the power series expansion

27

By substituting this series in (23) and comparing
coefficients of a, «? and o in the expansion of
each side, it is found that

a, = 3o + 2)/o, (28)
a, = a,(o — 2a,6 + 1)/(3a,0 — 1), (29)

_ 2a,[(3¢ — 22 — 10]
B 5680+ Qo + 1)

In the range 0 < a < 0:15, § was determined
for various values of ¢ using the first three
terms of the series (27). The differential equation
(23) was then forward integrated, starting at
o = 015 and advancing by steps of 005 to
o = 10 (which corresponds to vx/Ua? = 115 x
107). The fifth order Runge-Kutta procedure was
used and the calculation performed with the
help of an 1.C.T. 1907 computer.

Values of the Nusselt number at various
values of vx/Ua? in the range 4-31 x 1074~
1:15 x 107 (which is likely to be sufficient for
most practical purposes) were determined from

B =aa+ an? +a®+ ...,

(30)
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(26) for ¢ = 0-12, 0-24, 0-36, 0-48, 0-72 and 1.
They are displayed in Table 1. In Fig. 2 we show
how log,;e Nu varies with log,, (vx/Ua?) for
three typical Prandtl numbers.

The question of the accuracy of the computed
results has not been decided with certainty.
However, in view of the strong similarity
between our approach to this problem and the
calculation of the drag coefficient carried out by
Sakiadis [ 5], it seems likely that the errors in the
two problems will be comparable. (In the par-
ticular case when o = 1, the errors must, of
course, be identical because the problem of
calculating the Nusselt number Nu is then
the same as that of calculating the drag coefficient
Cp.) Accordingly, we suggest that the calculated
values of the Nusselt number displayed in Table
1 should be modified by muitiplying them by the
correction factors (the derivation of which was
explained in Section 3) shown in the final column
of the table. Because of the lack of complete
information about the correction factors, we
have not, however, displayed the modified
values.

6. DISCUSSION
It is interesting to observe first how the
values of the Nusselt number at corresponding
values of vx/Ua? differ for ¢ = 0-72 and 1. This

Table 1. The Nusselt number for various Prandtl numbers (c) and the proposed correction factors

Nusselt number

10810 7 Correction
Ua 6=012 ¢=024 =036  o=048 o =072 o=1 factor
—3.3656 2162 4082 57.97 7338 100-1 1257 0920
—27489 1095 2061 2020 3691 5017 6284 0921
—12265 2435 4469 6213 7728 1025 12:57 0931
—04527 1:380 2460 3341 4080 5252 6284 0935
0-5521 0-8644 1455 1893 2234 2736 3142 0941
13849 06915 1-106 1388 1-595 1880 2095 0946
21837 05982 09158 1117 1257 1440 1571 0951
29811 0-5353 07894 09408 1042 1169 1257 0956
37841 04877 06969 08152 08917 09851 1047 0961
45045 04495 06251 07201 07799 08513 08977 0966
54111 0-4176 0-5673 06452 06933 07495 07855 0971
62327 03904 0-5195 0-5847 06242 06696 06982 0975
70609 0-3667 0-4794 0-5347 0-5676 06051 06284 0980
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FiG. 2. Logarithm of the local Nusselt number as a function
of log, o(vx/Ua? for three different Prandtl numbers (o).

gives an indication of the error which arises when
the Prandtl number of air is taken to be unity
rather than the actual value of about 0-72. The
error is found to range from an underestimate
of about 26 per cent at small values of vx/Ua? to
4 per cent at large values.

Secondly, it is of interest to compare the
theoretical results obtained with those based
on an approximate formula devised by Glicks-
man [ 8], which we mentioned in the Introduction.
In our notation, Glicksman’s formula is

587
N = @R U
332
" [log,oldvx/Ua»]*

For fibres drawn through air, Glicksman
suggests that the formula should be reasonably
accurate when vx/Ua? > 10. However, com-
pared with values obtained from Table 1, we
find that it overestimates the Nusselt number by
about 37 per cent when vx/Ua® = 24 and by
about 27 per cent when vx/Ua? = 1-15 x 107.

€29)

Glicksman’s use for air of a Prandtl number of
unity is partly responsible for these discrepancies,
but the major contribution is a consequence of
taking over for the moving fibre Glauert and
Lighthill’s resuits [9] for flow over a stationary
fibre.

Some experimental work on drawn glass
fibres has been carried out by Alderson et al. [13].
They determined: (i) the dependence of the
average Nusselt number on the fibre radius a
when the flow rate nUa? is fixed; and (ii) the
variation of the average Nusselt number with the
speed U when the radius a is fixed. The experi-
ments were carried out on fibres of length 50 cm
whose temperature fell from 500°C to 100°C
and which passed through air at 20°C. Strictly,
the theory developed in this paper is applicable
only to fibres at a uniform constant temperature,
but by replacing the variable temperatures in
the experiments by average values an approxi-
mate comparison can be made, as follows.

Assuming that the temperature variations are
linear, the mean fibre temperature is 300°C
and consequently the mean air temperature is
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160°C. The physical constants of air required in
the calculation are thus assumed to have the
values they take at this temperature. For a flow
rate of 1073 cm?3/s, the Nusselt number was
calculated at the five points x = 10, 20, 30, 40
and 50 cm and the average of these values deter-
mined. Since the theory indicates that the Nusselt
number is a function of vx/Ua? only, there is,
of course no dependence on a for a given flow
rate. Figure 3 shows that the theoretical result
falls on average about 8 per cent below the experi-
mental values of Alderson et al. [13]. In view of

the rough averaging procedure we have used, the
extent of the agreement is closer than anticipated.

In a similar way, the average Nusselt number
was calculated for a fibre of radius 145 x 1074
cm for several different values of U in the range
100600 cm/s. Figure 4 shows that there is again
reasonably close agreement between the theo-
retical and experimental values.

We note finally that sithough we have con-
cerned ourselves with fluids of Prandtl number
o < 1, there are essentially no new difficulties in
carrying out calculations in the range o > 1.
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F1G. 3. Comparison of experimental and theoretical values of
the average local Nusselt number for variable fibre radius
a and a fixed flow rate of 1073 cm3¥s.
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Fic. 4. Comparison of experimental and theoretical values
of the average local Nusselt number for variable fibre speed
U and fixed radius of 145 x 10~ *cm.
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The basic differential equation (23) requires
modification because é > 6, when o > 1, but
this can easily be accomplished. Otherwise, no
changes are necessary.
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TRANSPORT DE CHALEUR A TRAVERS LA COUCHE LIMITE A SYMETRIE DE
REVOLUTION SUR UNE FIBRE CIRCULAIRE EN MOUVEMENT

Résumé—Dans le processus de fabrication d’une fibre de verre ou de polymére, un filament continu de
matériau chaud est étiré a partir d’un orifice et se refroidit au fur et 4 mesure qu’il traverse ’ambiance
extérieure. La vitesse de déperdition de chaleur, caractérisée par le nombre de Nusselt local, est d’un

intérét considérable d’un point de vue pratique.

Un modele simple de ce processus est examiné dans lequel 1a fibre est traitée comme un cylindre circulaire
continu infini sortant 4 vitesse constante d’un orifice et pénétrant dans un environnement fluide d’étendue
infinie. On montre que le mouvement du fluide qui est ainsi produit peut étre traité comme un probléme
de couche limite. Sur cette base, et en supposant que la fibre est maintenue & une température uniforme,
une méthode est &laborée pour trouver le nombre de Nusselt local au moyen de la technique intégrale de
Karman-Pohlhausen. Les résultats sont donnés pour plusicurs nombres de Prandt! (s) dans la gamme
0 < ¢ < 1. On a considéré soigneusement Uestimation de I'erreur probable provenant de Pemploi de la
méthode intégrale et des facteurs de correction convenables sont suggérés. Un procédé de moyenne
grossier permet de comparer avec quelques résultats expérimentaux de transport de chaleur sur des fibres

i températures non uniformes. Un accord satisfaisant est obtenu.

DER WARMEDURCHGANG DURCH DIE ACHSIAL-SYMMETRISCHE GRENZSCHICHT
AN EINER SICH BEWEGENDEN FASER VON KREISQUERSCHNITT.

Zusammenfassung—Bei der Herstellung von Glas- oder Polymerfasern wird k9ntiﬁuierlich ein Faden aus
heissem Material aus einer Diise gezogen und an der Umgebung abgekiihlt. Die Wirmeabgabe, abhingig
von der lokalen Nusseltzahl, ist von betrichtlichem Interesse fiir die Praxis.



HEAT TRANSFER FROM A MOVING FIBRE

Ein einfaches Modell dieses Prozesses wird gepriift, wobei die Faser als ein unendlich langer Zylinder von
Kreisquerschnitt behandelt wird, der kontinuierlich aus einer Diise kommt und durch ein fliissiges Medium
unendlicher Ausdehnung tritt. Es wird gezeigt, dass die entstehende Fliissigkeitsbewegung als Grenz-
schichtproblem behandelt werden kann. Auf dieser Grundlage und unter der Voraussetzung, dass die
Faser eine einheitliche Temperatur hat, wird mit der Kdérman—Pohlhausen-Integralmethode ein Verfahren
zur Berechnung der lokalen Nusseltzahl entwickelt. Die Ergebnisse sind fiir verschiedene Prandti-Zahlen
(6) im Bereich 0 < o < 1 dargestellt. Zur Abschitzung des Fehlers der durch den Gebrauch der Integral-
methode entsteht, wurden sorgfiltige Untersuchungen angestellt; entsprechende Korrekturfaktoren
werden vorgeschlagen. Eine grobe Uberschlagsrechnung erlaubt den Vergleich mit einigen experimentellen
Ergebnissen der Wirmeiibertragung an Fasern mit nicht einheitlicher Temperatur. Man stellt eine zufrie-

denstellende Ubereinstimmung fest.

TEIINIOOTOAYA ABMAHYIUIMMCA KPYIJIBIM BOJOKHOM AHCUAJIBHO-
CUMMETPUYHOMY IIO'PAHUYHOMY CJIOIO

Annoranua—TIIpu nponecce NpOM3BOACTBA CTEKJIAHHOIO WJIH TMOJHMEPHOr0 BOJIOKHA, U3
OTBEpPCTUSA BHTATUBAETCA HeNPePBLIBHEI QUIaMeHT ropsAYero MaTepHala, OXJIAMIAIOUIErOCA
BO BpeMA NPOXOICHUA [0 OKpY#amomel cpefe. GKOpOCTE NOTEPH TeNJIa, 31eCh OTHOCAIUKCA
wpurepuun HyccempTa CIy:XMT TMHOBHM NPHMEDOM, HpefcTaBifeT Goabuioft Inreper ¢
NpaKTHYeCKON TOYKH BpeHHsA.

PaccMarpuBasace npocraf MOZedb 3TOr0 NIPONECCa, UPU YeM BOJOKHO NPUHMMANOCH, KAK
HenpepHBHA GeCKOHeYHH KPYTJB LUIMHAD PAaBHOMEPHO BBHIXOJAMAK U3 OTBEPCTHA U
HPOXOAALMIL 110 GecKOHEUHOH KuAKOH cpene. Bugno, uTo o6pasyioleeca ABUNCHUE HUTKOCTH
MOMHO CYMTATh NOTPAHMYHHM cjioeM. Ha aToM OCHOBaHMM, M moJarad, 4To TeMIepaTypa
BOJIOKHA MOJIePHUBACTCA IOCTOAHHON, paspaboTanu crmoco6 HAXOMICHHA OTHOCAIIErOCA
rpurepua Hyccennra mocpencrsom marerpanbnoro merofa Kapman-Iloaraysena. [IpuBognm
pesyJIbTaTH pasiaMuHKX Kpurepu#t IIpaugrias (o) B auanazone 0< o < 1. MHOro BHEUMaHNA
YHEJAIN OLEHKe HOrPEUIHOCTH, N0 BCelt BEPOATHOCTH BOBHMKIIER, BCIAEACTBAE NPHMEHEHHA
HATErpajibHOTO MeTONa, M HPeAJOMHUIM COOTBETCTBYIOIME MONPABOYHHE KOa(PUIMeHTH.
ITpubausnrensrad npouesypa yCpegHEHUA IO3BOJMIIA NPOBECTH CPABHEHUA ¢ HECKOILKIMMU
pEBYIBTATAMHA DKCIIEPUMEHTAILHON TEIIIONepPelavl OT BOJIOKOH ¢ HEMOCTOSHHKIMU TeMiepa-

Typamu. IIpn cpaBHeHUN MOIYYHJIN YIOBIETBOPUTEILHH OTBET.
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