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Abstract-In the process of manufacturing a glass or polymer fibre, a continuous fdament of hot material 
is drawn from an orifice and cools as it passes through the surrounding environment. The rate of heat loss, 
typified by the local Nusselt number, is of considerable interest from a practical viewpoint. 

A simple model of this process is examined wherein the fibre is treated as a continuous infinite circular 
cylinder issuing steadily from an orike and penetrating a fluid environment of infinite. extent. It is shown 
that the fluid motion which is generated may be treated as a boundary layer problem. On this basis, and 
assuming that the fibre is maintained at a uniform temperature, a method is developed for fmding the 
local Nusselt number by means of the Karman-Pohlhausen integral technique. Results are given for 
several Prandtl numbers (0) in the range 0 d Q 6 1. Cardul consideration has been given to estimating 
the probable error arising from the use of the integral method and appropriate correction factors are sug- 
gested. A rough averaging procedure allows a comparison to be ma& with some experimental heat transfer 

results on fibres at non-uniform temperatures. Satisfactory agreement-is obtained. 

a, 
4, a2, a3, 

C D, 

k 
Nu, 

Q, 

NOMENCLATURE 

radius of fibre ; 
coefficients in series expansion 

x, 

Y, 

axial coordinate ; 
distance from the surface of the 
fibre. 

(27); 
local drag coefficient, defined by 
equation (13); 
thermal conductivity; 
local Nusselt number, 

rate of heat transfer per unit 
length of fibre ; 
distance from the axis of the fibre ; 
temperature ; 
surface temperature of the fibre; 
ambient temperature of the fluid ; 
speed of the fibre ; 
axial and radial fluid velocity com- 
ponents ; 

Greek symbols 

64, parameter in boundary layer velo- 
city profile, equation (7); 

B(X)? I parameter in boundary layer tem- 
perature profile. equation (19) ; 

i: 
Euler’s constant ; 
momentum boundary layer thick- 
ness ; 

6 TV thermal boundary layer thickness ; 

6, dummy variable in equation (9); 
K, thermal diffusivity ; 

P, absolute viscosity ; 

v, kinematic viscosity ; 
0, Prandtl number (V/K). 

1. INTRODUCTION 
l Senior Lecturer, Department of Applied Mathematics 

and Computing Science, University of Sheffield. IN THE glass and polymer industries, fibres are 
7 Now Assistant Mathematician, United Steels Co. Ltd., manufactured by means of a continuous extru- 

Swinden Laboratories, Moorgak, Rotherham. sion process. Essentially, a filament of hot 

583 



584 D. E. BOURNE and D. G. ELLISTON 

material is drawn through a circular orifice 
and wound onto a drum. The rate at which the 
fibre loses heat as it passes from the orifice to 
the drum is of considerable practical interest 
because this has an important bearing on its 
final characteristics. In particular, glass fibres 
are believed to derive their remarkably high 
strength from the high speed of drawing which 
promotes a rapid rate of cooling (Otto [l] and 
Bateson [2]). It is with the heat transfer process 
that we shall be concerned here. 

Recently, several authors have given attention 
to flows generated by continuous moving sur- 
faces. Foremost amongst the investigators was 
Sakiadis [3--5] who considered the boundary 
layer flow which develops when an unending 
flat sheet issues from a slot and moves steadily 
through a fluid which would otherwise be 
stationary ; the corresponding axially sym- 
metric boundary layer on a circular cylinder 
issuing steadily from an orifice was also singled 
out for study. Sakiadis was concerned with 
calculating the main momentum boundary 
layer characteristics, such as the drag coet5cient. 
Much of Sakiadis’s work on the axially sym- 
metric Row is relevant to the present problem 
and we shall later explain it in detail, We shall 
also discuss the probable accuracy which his 
method of solution achieves. 

The problem of heat transfer through bound- 
ary layers on continuous moving flat sheets 
has been studied by Tsou et al. [63. They ob- 
tained solutions for uniform wall temperature 
and for uniform heat flux conditions. Another 
important contribution has been made by 
Erickson et al. [7] who investigated theoretically 
the rate of cooling of a flat sheet when it pene- 
trates a fluid environment_ Due allowance 
was made for the heat capacity of the sheet and 
hence it was not constrained to remain at a 
uniform temperature. 

Theoretical work on heat transfer from a 
moving glass fibre has been presented by Glicks- 
man [g]. He investigated the dependence of the 
fibre temperature on distance from the orifice 
and remarked that the key problem is to 

determine the Nusselt number. Making the 
bounda~ layer approximations, Glicksman 
derived a formula for the Nusselt number 
based upon some earlier work by Glauert and 
Lighthill [9] on axisymmetric Iaminar boundary 
layer flow over a .fixed semi-infinite cylinder. 
However, Sakiadis [3, 5] demonstrate that 
there is a fundamental difference between the 
boundary layer on a moving cylinder (to which 
the tibre approximates): it was shown that the 
drag coefficient on a moving cylinder is about 
20 per cent less than that on a fixed cylinder. 
A similar difference can be expected in the 
corresponding Nusselt numbers. 

Glicksman also used Reynolds’ analogy to 
obtain the Nusselt number from Glauert and 
Lighthill’s result for the drag coefficient. How- 
ever, as noted by Glicksman, Reynolds’ analogy 
is strictly accurate only if the Prandtl number 
of the fluid is unity. The error in this approxima- 
tion can be appreciable even for air with a 
Prandtl number of about 0.72. It should be 
mentioned that this particular error could have 
been eliminated by using instead the solution 
to the problem of heat transfer through the 
axisymmetrical boundary layer on a fixed 
cylinder for arbitrary Prandtl number which 
has been given by Bourne and Davies [lo], 
Bourne et al. [ll] and by Eshghy and Horn- 
beck [12]. 

The object of the present paper is to give a 
method for calculating the Nusselt number 
which is free from the disadvantages inherent in 
Clickman’s method: the method deals directly 
with a moving fibre and is applicable to fluids 
of arbitrary Prandtl number. 

2. FORMULATION OF THE PROBLEM 

Since the present study of heat transfer is 
motivated by a problem of considerable practi- 
cal interest, it seems desirable to consider first 
the basic approximations which we shall make 
in order to understand the extent to which the 
theory is realistic. 

One of the most important underlying as- 
sumptions is that we can treat the problem as 
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one of heat transfer through an axially sym 
metric laminar boundary layer. Typically, the 
speed of a drawn !ibre will be in the range 
100-600 cm/s and the length of tibre of interest 
will be about 50 ems. It follows that for a flbre 
passing through air or some similar environ- 
ment, the Reynolds number will be in the range 
of about l@-105. This is certainly high enough 
for the boundary layer approximations to be 
applicable. The assumption of axial symmetry 
may not always be realistic since the fibre may 
undergo transverse vibrations, but provided 
the oscillations are not too rapid the boundary 
layer will not be seriously disturbed. 

There is some doubt as to the extent to which 
the boundary layer may be turbulent, but it is 
well substantiated that for flow over flat plates 
turbulence occurs at a Reynolds number of 
about 5 x 105. It seems unlikely that the 
critical Reynolds number in the present situa- 
tion will be vastly different from this. Accord- 
ingly, we assume that laminar flow conditions 
prevail. 

A further assumption we shall make is that 
the radius of the fibre is a constant. In practice, 
the initial radius may be about 10-l cm but 
this decreases very rapidly to about 2 x 10e3 
cm and then remains almost constant. The large 
change in radius usually occurs within a distance 
of l-2 cm from the orifice, which is only 2-4 
per cent of the total distance to the drum onto 
which the fibre is wound. As an approximation, 
it thus seems entirely reasonable to neglect the 
variation of the radius near the orifice. 

The most serious difficulty is that the tem- 
perature of the fibre is not uniform. Typically, 
the temperature decreases by as much as 
1OOOC in passing from the orifice to the drum 
and consequently the physical constants of the 
environment through which the fibre moves 
may vary considerably. Problems involving 
variable fluid properties are notoriously dif- 
ficult to handle and we can see no way of 
dealing with this one analytically. Instead, we 
shall be content to replace the non-uniform 
fibre temperature by a uniform average value 

and also neglect any variation of the physical 
properties of the fluid. Although this procedure 
may seem a severe shortcoming, the final 
results are rather surprisingly useful. We shall 
show, for example that the dependence of the 
Nusselt number on the drawing speed and fibre 
radius is supported by some experimental 
findings of Alderson et al. [13]. Further, 
Glicksman [8] has shown how knowledge of 
the average Nusselt number can be used to 
estimate the dependence of fibre temperature 
on distance from the orifice. 

Finally, it should be mentioned that we 
assume that forced convection is the dominant 
heat transfer mechanism and also neglect any 
viscous dissipation of energy in the boundary 
layer. By examining the orders of magnitude 
of the Rayleigh and Eckert numbers, it is readily 
verified that the conditions under which we may 
neglect natural convection and viscous dis- 
sipation are well fulfilled. 

Fibre 

7; 

I 
u 

x 

-0 

3 u l- 
Y 

u 

FIG. 1. Endless circular fibre drawn steadily downwards 
through a circular orifice. 

With the approximations described above, 
the problem to be undertaken is reduced to that 
of finding the Nusselt number for a continuous 
circular fibre issuing from an orifice into a 
homogeneous fluid (Fig 1). It will be assumed 
that the fibre is maintained at a uniform tem- 
perature T, and that it moves in the axial 
direction away from the orihce with constant 
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speed U. At large distances from the fibre, 
the fluid is at rest and at a uniform temperature 
T 00, 

We take coordinates x and r which measure 
distance along the axis of the fibre from the 
orifice and distance from the axis respectively. 
Let u, II, respectively, be the axial and radial 
components of the fluid velocity (Fig. 1) and 
denote the fluid temperature by T. The ap- 
propriate boundary layer equations are 

r g f f (rv) = 0, 

au au v a au 
uz+vz=;g ‘5, ( > (2) 

aT aT ua aT 
u--+u--_=-- I--, 

ax ar ( > r dr ar (3) 

where v, IC are, respectively, the kinematic 
viscosity and thermal diffusivity of the fluid. 
The boundary conditions are 

u = u, u = 0, T = T, at r = a, (4) 

u --) 0, v-+0, T+T, as r-+cc, (5) 

where a is the radius of the fibre. 

3. CALCULATION OF THE VELOCITY PROFILE 

The first step towards finding the rate of heat 
transfer is to determine the velocity profile from 
equations (1) and (2). This has been carried 
out by Sakiadis [S] using the Karman-Pohl- 
hausen technique, and it is convenient to 
recall here the essentials of the analysis. 

Integrating equations (1) and (2) from the 
to the surface of the cylinder to infinity leads 

momentum integral equation, viz. 

- log, 2E - ; + ;. 

(6) Using the asymptotic formula 

e2@ ezE ---- Ei(2a) + Ei(2c) + log, 2a 
cr & 

g, 

$x 
s 

u’(a + y)dy = 
au 

-av ay ),=o 0 
0 

where y = r - a denotes distance from the 
Ei(2.z) 151 y + log, (24 as E --) 0, (11) 

surface of the cylinder. where y = 05772 . . is Euler’s constant, it 

Denoting the thickness of the momentum f;lp teh$ 
boundary layer by 6(x), Sakiadis adopted as a v 
suitable Pohlhausen profile 

- L Ei(2a) + lo&(2a) + y _ 2, (12) 
Ua2-ol- 

U 
-=I---tloge 1+; 
u a(x) i 1 

for y < 6cx) (7) 

and 

u 
v = 0 for y >/ 6(x). (8) 

This profile has good accuracy near to the fibre, 
which is known to be a particularly desirable 
feature when calculating surface characteristics. 
Furthermore, it is asymptotically of the correct 
form as x -+ 00. For, when x -+ co, the inertia 
terms in the equation of motion (2) vanish 
(because u becomes uniform) and the reduced 
equation is then satisfied by (7) identically. 

By forcing the profile to satisfy the momentum 
integral equation (6), the equation to determine 
the free parameter a(x), was found to be 

a(x) 

2”“=*im ezt SC ezr --- 
Ua2 

+ 1 + 1 
B-+0 t t2 t t2 

dt. (9) 

E 

Sakiadis evaluated the integral in (9) by a 
numerical method, but it can be expressed in 
terms of the tabulated exponential integral 
function Ei(z), defined by 

Ei(z) = s ;dt. (10) 

Integrating the second term by parts, the 
integral on the right-hand side of (9) is found 
to be 
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By using the appropriate tables, values of o! 
as a function of 2vx/Ua2 were determined from 
(12) and were fo&d to agree with those tabu- 
lated by Sakiadis [S]. 

The Karma+Pohlhausen procedure is not, 
of course, exact and it will be of some interest 
later to have available an estimate of the likely 
error incurred in using it to find the local drag 
coefficient, defined as 

c D = - 2~aAaulaY),=,/o1u), (13) 

where p is the absolute viscosity. Substituting 
the velocity profile (7), we find 

CD = 27$%(x). (14) 

Now it is readily deduced from (9) that 

2vx 
B”ti2 as u 40. (15) 

It follows that 

as x-,0. (16) 

But in limit when x -+ 0, the local drag coefftcient 
on the fibre should be the same as that on a 
semi-infinite flat sheet issuing from a slot with 
steady speed U into a fluid at rest at large 
distances. Sakiadis [4] solved this problem 
exactly and showed that 

08887I Ua2 * cI,= * 
( > vx . (17) 

The drag coefficient at the leading edge of the 
tibre is therefore underestimated by about 8 per 
cent using the Karman-Pohlhausen method. 
Since the assumed velocity profile becomes 
increasingly accurate as x increases (and is 
asymptotically correct), it seems very likely that 
the error in the drag coefficient will decrease 
with increasing x. 

To obtain an estimate of how the error varies, 
we may consider the work of Glauert and Light- 
hill [9] who encountered a similar situation in 
their Karman-Pohlhausen treatment of the 
axially symmetric boundary layer on a fixed 

cylinder. They found that the drag coefficient 
is underestimated by 13 per cent at the leading 
edge, and that the error decreases as x increases. 
Using the formulae given in their paper, we 
find that the errors are about 12 per cent and 
3 per cent when log,, (vx/Ua’) is -3 and 7, 
respectively. If we assume that the error de- 
creases linearly in this range of log,, (vx/Ua’) 
and adjust the values of the drag coefficient 
predicted by the Kansan-Pohlhausen solution 
accordingly, we obtain values which differ by 
about 1.5 per cent at most from those finally 
recommended by Glauert and Lighthill. 

In the present problem, the exact solution for 
large values of vx/Ua’ is not available and 
consequently, in this range, it is not easy to 
estimate the error in the values for the drag 
coefficient. However, it seems plausible to 
suppose that the error will decrease in a manner 
somewhat similar to that in the problem of flow 
over a fixed cylinder. We shall assume, theiefore, 
that the Karman-Pohlhausen solution under- 
estimates the drag coefficient by 8 per cent at 
log,, (vx/Ua’) = -3 and that this underesti- 
mate decreases linearly to 2 per cent at log,,, 
(vx/Ua’) = 7. Table 1 displays the correction 
factor calculated on this basis corresponding to 
various values of log,, (vx/Ua’). The values of 
the drag coefficient CD which we would recom- 
mend at these values of log,, (vx/Ua’) may be 
obtained by multiplying the results under the 
column 0 = 1 by the appropriate correction 
factor. [When Q = 1, the drag coefficient C, is 
identical to the Nusselt number Nu defined 
later, equation (26)]. 

Finally in this section, we note that in the case 
of flow over a fixed cylinder, Seban and Bond 
[14] showed that the flat plate solution is 
accurate to within 2 per cent when log,, 
(vx/Ua2) < -3. In the present problem, the 
flat plate solution of Sakiadis [4] probably has a 
similar range of validity. 

4. THE RATE OF HEAT TRANSFER 

The Karman-Pohlhausen method proposed 
for finding the temperature distribution and 
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rate of heat transfer is similar to that used by The assumption that 6 < 6, implies that the 
Boume et al. [l l] in the corresponding problem Prandtl number CT = V/K is less than or equal to 
of flow over a fixed cylinder. unity. An equation similar to (211 for the case 

Integrating the energy equation (3) from the 
surface of the cylinder to infinity, we obtain the 
energy integral equation, viz. 

when 0 > 1 can easily be derived, but this range 
of Prandtl numbers will not be considered here. 

The factor da/dx which is implicit in (21) may 
be eliminated by means of equation (9). Dif- 
ferentiating the latter equation with respect to 
CI yields 

Cc 

-& u(T s - T,)(a + y)dy = -UK z 0 
0 

dy ).=o’ 

A suitable form for the temperature profile is 
readily found: for, the profile for T should be 
essentially similar to that for u [given by equa- 
tions (7) and (S)] because T - T, and u satisfy 
similar differential equations and similar boun- 
dary conditions. Accordingly, we assume that 

T - T, 

T, - T, = ’ 

and 

T - T, 

?;v - 7-c 
= 0 for y 2 6,(x), (20) 

where S,(x) is the thickness of the thermal 
boundary layer. This form for T satisfies the 
basic diffe~ntial equation at the surface of the 
cylinder (y = 0) and the appropriate boundary 
conditions. Furthermore, like the chosen form 
for u, the profile will be asymptotically correct 
when x -+ co because the convection terms on the 
left-hand side of the differential equation (3) 
vanish in the limit, and the right-hand side is 
reduced to zero identically when (19) and (20) 
are substituted. 

Substituting (7), (8), (19) and (20) into the 
energy integral equation (18) and assuming that 
ii d &, we obtain 

dx Ual 

da - 2vaZ 
- __ [e26fa - I) + a -I- 11. (221 

Performing the differentiation in (21) and using 
(22), it follows after some simplification that 

2 [e”“(a - 1) + a + 1] + /IGI- ‘[eza(2a/J 

- 2az + 2rx - /I - 1) + /.$ + l] 

= 2flcr-‘a- ‘[e2”(a - 1) + E t l]. (231 

It can easily be deduced from equations (7) 
and (8) that a(x) = log,[ 1 + a- ‘S(x)] ; and 
similarly from equations (19) and (20) we obtain 
B(x) = log,[l + a- i&(x)]. Since 6(O) = 6#) 
= 0, it follows that 

,LI = 0 when a = 0. (241 

This is the necessary boundary condition for the 
di~erential equation (23). 

The local rate of heat transfer, per unit length 
of cylinder is 

Q(x) = -2~~~(~~~~~~~~~ (25) 

Defining the Nusselt number Nu to be Q/[k(T;, 
- T,)], it follows from (19) and (25) that 

Nu =r zn 
P’ 

The function /I can be obtained in terms of rx 
by integrating equation (23) subject to the boun- 
dary condition (24). In the previous section we 
showed how CC can be found as a function of 
vx/Ua2, and hence we are now in a position to 
determine the Nusselt number. 
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5. COMPUTATION OF RESULTS 

At the point a = 0, /l = 0, the expression for 
dg/da given by (23) is of an indeterminate form. 
To find B in the neighbourhood of this point, 
consider the power series expansion 

fi = ala + aZa2 + u3a3 -t . . . . (27) 

By substituting this series in (23) and comparing 
coefficients of a, a2 and a3 in the expansion of 
each side, it is found that 

a, = $(G + 2)/o, (28) 

az = ar(a - 2a,o + 1)/(3a,a - l), (29) 

a3 = k2C(3a - 2)2 - 101 
45(3a + 2)(o + 1) ’ 

(30) 

In the range 0 < a < 0.15, B was determined 
for various values of u using the first three 
terms of the series (27). The differential equation 
(23) was then forward integrated, starting at 
a = 0.15 and advancing by steps of O-05 to 
a = 10 (which corresponds to vx/UaZ = 1.15 x 
10’). The fifth order Runge-Kutta procedure was 
used and the calculation performed with the 
help of an I.C.T. 1907 computer. 

Values of the Nusselt number at various 
values of vx/UaZ in the range 4.31 x 10T4- 
1.15 x 10’ (which is likely to be sufficient for 
most practical purposes) were determined from 

(26) for G = 0.12, 0.24, O-36, 0.48, 0.72 and 1. 
They are displayed in Table 1. In Fig. 2 we show 
how lo& Nu varies with log,, (vx/Ua2) for 
three typical Prandtl numbers. 

The question of the accuracy of the computed 
results has not been decided with certainty. 
However, in view of the strong similarity 
between our approach to this problem and the 
calculation of the drag coeficient carried out by 
Sakiadis [S], it seems likely that the errors in the 
two problems will be comparable. (In the par- 
ticular case when Q = 1, the errors must, of 
course, be identical because the problem of 
calculating the Nusselt number Nu is then 
the same as that of calculating the drag coefficient 
C,.) Accordingly, we suggest that the calculated 
values of the Nusselt number displayed in Table 
1 should be modified by multiplying them by the 
correction factors (the derivation of which was 
explained in Section 3) shown in the final column 
of the table. Because of the lack of complete 
information about the correction factors, we 
have not, however, displayed the modified 
values. 

6. DISCUSSION 

It is interesting to observe first how the 
values of the Nusselt number at corresponding 
values of vxlUa2 differ for c = 0.72 and 1. This 

Table 1. The Nusselt number for various Prandtl numbers (u) and the proposed correctionfactors 

log,, $2 
Q = 0.12 

Nusselt number 

(r = 0.24 c = 0,36 Q= @48 D = 0.72 

Correction 

o=l factor 

- 3.3656 21.62 40.82 57.97 73.38 I 100.1 I 125.7 0.920 
- 2.7489 10.95 20.61 29.20 36.91 50.17 62.84 0.921 
- 1.2265 2.435 4469 6.213 7.728 10.25 12.57 0.931 
- 0.4527 1.380 2460 3.341 4080 5.252 6.284 0.935 

0.5521 0.8644 1.455 1.893 2.234 2.736 3.142 0.941 
1.3849 0.6915 1.106 1.388 1.595 1.880 2095 0.946 
2.1837 0.5982 0.9158 1.117 1.257 1440 1.571 0.951 
2.9811 0.5353 0.7894 0.9408 1042 1.169 1.257 0.956 
3.7841 0.4877 0.6969 0.8152 0.8917 0.9851 1047 0.96 1 
4.5945 04495 06251 0.7201 0.7799 0.8513 0.8977 0.966 
5.4111 0.4176 05673 06452 0.6933 0.7495 0.7855 0.971 
6.2327 0.3904 w5195 0.5847 06242 066% 0.6982 0.975 
7.0609 0.3667 0.4794 0.5347 0.5676 06051 0.6284 0.980 
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FIG. 2. Logarithm of the lo4 Nusseit number as a function 
of iog,,(vx/Ua2) for three different Prandtl numbers (at. 

gives an indication of the error which arises when 
the Prandtl number of air is taken to be unity 
rather than the actual value of about 0+72. The 
error is found to range from an underestimate 
of about 26 per cent at small values of vx/Ua2 to 
4 per cent at large values 

Secondly, it is of interest to compare the 
theoretical results obtained with those based 
on an approximate formula devised by Glicks- 
man f8], which we mentioned in the Introduction. 
In our notation, Glicksman’s formula is 

Nu = 
5.87 

log,o(4vx/ua~) 

3.32 

- [log,,(4vx/UaZ)-J3’ 
(31) 

For fibres drawn through air, Glicksman 
suggests that the formula should be reasonably 
accurate when vx/Ua2 > 10. However, com- 
pared with values obtained from Table 1, we 
find that it overestimates the Nusselt number by 
about 37 per cent when vx/Ua2 = 24 and by 
about 27 per cent when vx/Ua2 = 1.15 x 10’. 

Glicksman’s use for air of a Prandtl number of 
unity is partly responsible for these dis~rep~~es, 
but the major contribution is a consequence of 
taking over for the moving fibre Glauert and 
Lighthill’s results [9] for flow over a stationary 
fibre. 

Some experimental work on drawn glass 
Iibres has been carried out by Alderson et al. [13]. 
They determined: (i) the dependence of the 
average Nusseh number on the fibre radius a 
when the flow rate nUa2 is fixed; and (ii) the 
variation of the average Nusselt number with the 
speed U when the radius a is fixed. The experi- 
ments were carried out on fibres of length 50 cm 
whose temperature fell from 500°C to 100°C 
and which passed through air at 20°C. Strictly, 
the theory developed in this paper is app~~able 
only to fibres at a uniform constant temperature, 
but by replacing the variable temperatures in 
the experiments by average values an approxi- 
mate comparison can be made, as follows. 

Assuming that the temperature variations are 
linear, the mean Iibre temperature is 300°C 
and consequently the mean air temperature is 
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160°C. The physical constants of air required in the rough averaging procedure we have used, the 
the calculation are thus assumed to have the extent of the agreement is closer than anticipated. 
values they take at this temperature. For a flow In a similar way, the average Nusselt number 
rate of 10h3 cm3/s, the Nusselt number was was calculated for a fibre of radius 145 x 10m4 
calculated at the five points x = 10, 20, 30, 40 cm for several different values of U in the range 
and 50 cm and the average of these values deter- 100-600 cm/s. Figure 4 shows that there is again 
mined. Since the theory indicates that the Nusselt reasonably close agreement between the theo- 
number is a function of vx/Uaz only, there is, retical and experimental values. 
of course no dependence on a for a given flow We note fmally that al~ou~ we have con- 
rate. Figure 3 shows that the theoretical result cerned ourselves with fluids of Prandtl number 
falls on average about8 per cent below the experi- 0 G 1, there are essentially no new difficulties in 
mental values of Alderson et al. [13]. In view of carrying out calculations in the range CF > 1. 

14 

I, 

$? IX 

04 

0.0 

::l__~~_____~~,,~~~______l 
30 40 50 
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Fro. 3. Comparison of experimental and theoretical values of 
the average local Nusselt number for variable fibre radius 

a and a fixed flow rate of lo-” cm 3/s, 

. 

Experimental values 

/ l 

. 

Theoretical curve / 

I I I 

3 
I 

200 300 400 500 
f% cm/s 

FIG. 4. Comparison of experimental and theoretical values 
of the average local Nwselt number for variable fibn speed 

U and fixed radius of 145 x lo-’ cm. 
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The basic differential equation (23) requires 6. F. K. Tsou, E. M. SPARROW and R. J. GOLDSTEIN. 

modification because 6 > BT when CY > 1, but Flow and heat transfer in the boundary layer on a 

this can easily be accomplished. Otherwise, no continuous moving surface, Int. J. Heat Mass Transfer 

changes are necessary. 
10,219 (1967). 
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TRANSPORT DE CHALEUR A TRAVERS LA COUCHE LIMITE A SYMETRIE DE 
REVOLUTION SUR UNE FIBRE CIRCULAIRE EN MOUVEMENT 

R&n&-Dans le processus de fabrication dune fibre de verre ou de polymere, un filament continu de 
mattriau chaud est &tire a partir d’un orifice et se refroidit au fur et a mesure qu’il traverse l’ambiance 
exttrieure. La vitesse de d&perdition de chaleur, caracteriste par le nombre de Nusselt local, est d’un 
inter& considerable d’un point de vue pratique. 

Un modele simple de ce processus est examine dans lequel la hbre est traitte comme un cylindre circulaire 
continu inlini sortant ii vitesse constante d’un orifice et pen&rant dans un environnement fluide d’bendue 
intinie. On montre que le mouvement du fluide qui est ainsi produit peut etre trait6 comme un problbme 
de couche limite. Sur cette base, et en supposant que la tibre est maintenue a une temperature unifotme, 
une mtthode est &labor& pour trouver le nombre de Nusselt local au moyen de la technique integrale de 
KkmanPohlhausen. Les rbultats sont don& pour plusieurs nombres de Prandtl (u) dans la gamme 
0 < D < 1. On a consider& soigneusement l’estimation de l’erreur probable provenant de l’emploi de la 
methode integrale et des facteurs de correction convenables sont suggerb. Un pro&de de moyenne 
grossier permet de comparer avec quelques r&sultats experimentaux de transport de chaleur sur des libres 

a temperatures non uniformes. Un accord satisfaisant est obtenu. 

DER WARMEDURCHGANG DURCH DIE ACHSIAL-SYMMETRISCHE GRENZSCHICHT 
AN EINER SICH BEWEGENDEN FASER VON KREISQUERSCHNITT. 

Zusammenfassung-Bei der Herstellung von Glas- oder Polymerfasem wird kontiriuierlich ein Faden aus 
heissem Material aus einer D&e gezogen und an der Umgebtmg abgekiihlt. Die Warmeabgabe, abhangig 
von der lokalen Nusseltzahl, ist von betriichtlichem Interesse fiir die Praxis. 
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Ein einfachea Modell dieses Proxesses wird gepriift, wobei die Faser als ein unendlich langer Zylinder von 
Kreisquerschnitt behandelt wird, der kontinuierlich aus einer Diisc kommt und durch ein fliissiges Medium 
unendlicher Ausdehnung tritt. E!s wird gezeigt, dass die entstehende FXissigkeitsbewegung als Grenz- 
schichtproblem behandelt werden kann. Auf dieser Grundlage und u&r der Voraussetzung, dass die 
Faser eine einheitliche Temperatur hat, wird mit der KgrmBn-Pohlhausen-Integrabnethode ein Verfahren 
zur Berechnung der lokalen Nusseltxahl entwickelt Die Ergebnisse sind fiir verschiedene Prandtl-Zahlen 
(6) im Bereich 0 < Q Q 1 dargestellt. Zur Absctitzung da Fehlers der durch den Gebrauch der Integral- 
methode entsteht, wurden sorgf&ltige Untersuchungen angestellt; entsprechende Korrekturfaktoren 
werden vorgeschlagen. Eine grobe &z&lagsrechnung erlaubt den Vergleich mit einigen experimentellen 
Ergebnissen der Wiirmeiibertragung an Fasem mit nicht einheitlicher Temperatur. Man stellt eine zufrie- 

denstellende Obereinstimmung fest. 

TEIIJIOOTfiAqA fiB&IXY~klMCH ECPYI’JIbIM BOJIOICHOM AI-XRAJIbHO- 
CBMMETPM~HOMY l-IOI’PAHB=IHOMY CJIOIO 

A~IHOTEQHSS-~~~II IIpO~eCCC npOuaBOJ(CTBa CTeKJVlHHOrO UJIU nOJIuMepHOr0 BOJlOHHa, u3 

OTBepCTuH BbITHruBaeTcfl HenpepbrBHbIt @inameHT ropflqero MaTepnana, OxnaHcflaroqerocH 
~0~pe~~.npoxom~e~u~nooKpymalo~e~cpe~e.CKopocTbnoTep~~Ten~a,a~ecb0~~0C~~uB~11 

KpuTepuu HyCCenbTa CJIyxtuT TunOBHM npuMepOM, npeacTannJ?eT 6onbtnoti nHTeper c 

npaKTuvecKoZt TOYKU apeHufz. 

PaCCMaTpHBaJIaCb npOCTaJ3 MOReJIb aTOr npOqeCCa, npu 4eM BOJIOKHO npuHllMaJlOCb, KaK 

HenpepbIBHti 6eCKOHeWbI# KpyrJInti UuJIuH;rp paBHOMepH0 BbIXOAIIIlJutt Ma OTBepCTUH U 

npoxo~~~2tno6eCKOHeYHOltt~(11~~0~cpe~e.Bu~~0,~~0o6paay1o~eec~~B~~ieHue~u~~0~~u 

MOJKHO C9uTaTb nOrpaHu9HbIM CJIOeM. Ha aTOM OCHOBaHun, u nonaran, 9~0 TemnepaTypa 

BOnOKna no~~epmkiBaeTcJi IIOCTOHHHOti, paapa6oTanu cnoco6 HaxomAeHua OTHocHyeroca 

KpuTepuR HyccenbTa nocpeficTBom MHTerpanbHoro MeTona H'apMaH-IIonrayaeHa. II~UB~AUM 

peaynbTaTar paanawnx KpuTepult npaH&TnH (u)B AuanaaoHe OC B Q 1. MHoro BHIiMaHuH 
yReaHna 0qeHHe norpenmocm, no Bcet BeponTnocTu BoaHuKmeti, BcJreRcTsne npnmenemfa 
EiHTerpanbHoro MeToga, n npennomMnR CooTseTcTaylo~ue nonpaaorabre Koa#@aqMerrrn. 
npu6JIuaUTeJIbHafl npOuej.lypa yCpeRHeHuH noaBoJIUJIa npOBecTu CpaBHeHufi C HeCKOJIbKUMu 

peayJrbTaTaMu aKcnepunenTanbnolt Tennonepeaawi 0~ B~~OK~H c HenocTo8niHbndu Tebfnepa- 

TyplMu. npu CpaBHeHUM nOJQWiJIu yAOBJIeTBOpKTeJIbHbIti OTBeT. 


